Skip to main content
Criticizing Critical Thinking
Andrew Watson
Andrew Watson

AdobeStock_29005489_Credit

Over at Newsweek, Alexander Nazaryan wants to vex you. Here’s a sample:

Only someone who has uncritically mastered the intricacies of Shakespeare’s verse, the social subtexts of Elizabethan society and the historical background of Hamlet is going to have any original or even interesting thoughts about the play. Everything else is just uninformed opinion lacking intellectual valence.

If you’d like a more nuanced version of this argument, check out Daniel Willingham’s Why Don’t Students Like School. 

In particular, you might read…

Chapter 2: “Factual knowledge must precede skill”

Chapter 4:  “We understand things in the context of what we already know, and most of what we know is concrete”

Chapter 5: “It is virtually impossible to become proficient at a mental task without extended practice”

and chapter 6: “Cognition early in training is different from cognition late in training”

From another vantage point: my own book Learning Begins discusses the dangers of working memory overload lurking in efforts to teach critical thinking.

Whether you prefer Nazaryan’s emphatic declamations, or Willingham’s and my more research-focused commentary, take some time to think critically about all the cognitive legwork that must precede real critical thought.

Lighten the Load
Andrew Watson
Andrew Watson

AdobeStock_44554611

You’d like an 8 page summary of Cognitive Load Theory, written in plain English for teachers? You’d like three pages of pertinent sources?

Click here for a handy report from the Centre for Education Statistics and Evaluation. (That’s not a typo; the Centre is in New South Wales, Australia.)

For example: you might check out the “expertise reversal effect” described on page 7; you’ll gain a whole new perspective on worked examples.

How Best to Count
Andrew Watson
Andrew Watson

AdobeStock_50754220_Credit

Should young children count on their fingers when learning math?

You can find strong opinions on both sides of this question. (This blog post uses 4 “No’s” and 5 exclamation points to discourage parents from allowing finger counting.)

Recent research from the University of Bristol, however, suggests that finger counting–when combined with other math exercises–improves quantitative skills more than either intervention by itself.

The study design is quite complex; check the link above if you’d like the details. But, the headline is clear: for 6- and 7-year-olds, a taboo against finger counting may well hinder the development of math skills.

Default Image
Andrew Watson
Andrew Watson

Here on the blog, we write a lot about desirable difficulties: that elusive middle ground where cognitive work is hard enough but not too hard.

Over at The Learning Scientists, they’ve got a handy list of resources to guide you through this idea more fully.

For an added benefit, the article begins with a brief criticism of the theory.

Enjoy!

Default Image
Andrew Watson
Andrew Watson

Like you, the Effortful Educator knows that retrieval practice benefits learning. But: how to get your students to do it?

Here‘s one strategy he proposes…if you’re like me, you’ll admire its wisdom and simplicity.

Lefty or Righty?
Andrew Watson
Andrew Watson

AdobeStock_158208473_Credit

You’ve surely heard about students being left-brained or right-brained. And: you’ve probably heard that this belief is a myth.

The folks over at Ted Ed have made a helpful video explaining the genesis of this belief, and the ways that we know it’s not true.

An important note in this controversy: it is certainly true that some people are more creative than others. It’s also certainly true that some are more logical than others. After all–to summarize psychology in three words–people are different.

Also, the phrase “left-brained” may be useful shorthand for “rather more logical,” and “right-brained” for “more creative than most.”

After all, we can use the phrase “heart-broken” without believing that this lovelorn person’s heart is–you know–actually broken.

But, we should be quite clear that creativity and logical thought aren’t “happening” on different sides of the brain. In fact, we should also recognize that a sharp distinction between creativity and logical thought doesn’t even make much sense.

So: you might be left-handed or right-handed, but you aren’t left-brained or right-brained–except in a rather creative way of speaking.

(By the way, if you’d like to learn about AMAZING research into people who literally have only half a brain, click here.)

How Best to Take Notes: A Public Service Announcement
Andrew Watson
Andrew Watson

AdobeStock_108457358_Credit

The school year is beginning, and so you’re certainly seeing many (MANY) articles about the debate over laptop notes vs. handwritten notes.

If your research stream is anything like mine, most of the articles you see assert that handwriting is superior to laptops for note-taking.

And, most of those articles cite Mueller and Oppenheimer’s blockbuster study, arguing–as its witty title avers–“the pen is mightier than the keyboard.”

Here’s my advice: don’t believe it.

More substantively: it’s possible that the pen is mightier than the keyboard. However, Mueller and Oppenheimer’s study supports that conclusion only if you believe that students can’t learn new things.

(Of course, that would be a very odd belief for a teacher to have.)

If you believe that students can learn new things, then this widely cited study suggests that laptop notes ought to lead to more learning than handwritten notes.

After all, a student who has practiced correct laptop note-taking can a) write more words than a student who takes notes by hand, and b) take notes in her own words just as well as a student who takes notes by hand.

Mueller and Oppenheimer’s research clearly suggests that a) + b) ought to lead to more learning.

The details of this argument get tricky; I lay them out in this post.

TWO CAVEATS

FIRST: I am not saying that I know laptop notes to be superior to handwritten notes.

I am saying that the study most often used to champion handwritten notes simply does not support its own conclusion. If you believe students can learn new things, then Mueller and Oppenheimer’s research suggests that laptop notes ought to lead to more learning.

A study testing my hypothesis has not–as far as I know–been done.

SECOND: you might reasonably say that students taking notes on laptops will be distracted by the interwebs. For that reason, handwritten notes will be superior.

I very much share this concern. (In fact, Faria Sana’s research shows that laptop multitasking distracts not only the multitasker, but also the person sitting behind the multitasker–a serious problem in lecture halls.)

However, multitasking is a separate question–not one addressed by Mueller and Oppenheimer.

The narrow question is: do non-multitasking laptop note-takers learn more than non-multitasking handwritten note-takers?

If the answer to that question is “yes,” then we should train laptop note-takers a) to reword the teacher’s lecture–not simply to write it down verbatim, and b) to unplug from the interwebs.

This combination will certainly be difficult to achieve. But, it might be the very best combination for learning.

A FINAL POINT

The laptops-vs.-handwriting debate stirs up a remarkable degree of fervor–more than I would expect from a fairly narrow and technical question.

I suspect that this debate is in fact a proxy war between those who think we should use more technology in schools (who favor laptop notes) and those who think we already use too much technology in schools (who favor handwriting).  That is: we’re not so much concerned with note-taking specifically as we are with technology in general.

That’s an important conversation to have. In fact, it’s central to the November Learning and the Brain Conference.

At the same time, let’s be sure that our general views on technology don’t obscure the answer to a precise, researchable question. If students learn more by taking notes on laptops, let’s find that out with well-designed research studies and then guide them well.

 

Online K-12 Schools
Andrew Watson
Andrew Watson

AdobeStock_113099546_Credit

The upcoming Learning and the Brain Conference (Boston, November) will focus on “Merging Minds and Technology.”

Given that I blog so much about the importance of skepticism, it seems only appropriate to offer up at least some voices that are highly doubtful about the benefits of technology–in particular, virtual classrooms.

Freddie deBoer has strong opinions, and he supports them with data. You’ll want to check out the graph he includes: one of the axes shows the equivalent of “days of learning lost.” That number–especially when it comes to math learning–will astonish you.

Promoting Motivation?
Andrew Watson
Andrew Watson

AdobeStock_118814656_Credit

Over at 3 Star Learning Experiences, Kirschner and Neelan are skeptical about research into academic motivation.

In essence, they argue that defining motivation can be quite a trick, and measuring it even more so. If we struggle to define and measure something, it’s hard to be scientifically thoughtful (and accurate) about it.

As a result, we tend to discuss vague things like “student engagement”: it sounds good (who could be opposed to “student engagement”?), but it’s hard to know if behavior that looks like “engagement” reliably promotes learning.

I share much of their concern about this part of our field. In fact, I find Dweck’s work on Mindset, and Steele’s work on Stereotype Threat, so interesting because they have found motivational topics that can be both defined and measured.

Like Kirschner and Neelen, I’ll be more motivated to explore this field when more of it can cross these essential thresholds.

 

Default Image
Andrew Watson
Andrew Watson

Two articles jumped out at me today because of the illustrative way they clash with each other.

Writing on Twitter, and providing helpful links to several sources, Adam Grant argues that “Differences between Men and Women are Vastly Exaggerated.”

Whereas Neuroscience News published a summary of a recent research study (by Daniel Amen) with the headline “Women Have More Active Brains Than Men.”

So, which is it? Are differences between the sexes exaggerated? Or do male and female brains operate very differently?

Let’s use three lenses to look at that question.

The First Lens: Discipline

Oversimplifying for the sake of clarity, we can say that neuroscience studies brains–that is, physical objects. It looks at neurons and blood flow and neurotransmitters and electrical energy. Things.

Psychology studies the behavior of brains–that is, what people do with those physical objects. It looks at a student’s ability to remember, or an athlete’s ability to concentrate, or an adult’s ability to learn a new language. Behaviors.

Obviously, both neuroscience and psychology are fascinating. But, which discipline is more useful?

Of course, the answer to that question depends on your definition of “useful.”

I myself think that teachers benefit from learning about the behavior of brains (that is, psychology) more than we do from learning about brains as objects (that is, neuroscience).

For example, if I tell you how brains change physically when long-term memories form, that information is interesting. (In fact, I often share this information when I talk with teachers.)

But, if I tell you what kind of teaching behavior makes long-term memory formation more likely, that information is really useful.

For this reason, I think Grant’s summary–which focuses on psychology–is likely to be more useful than the Amen study–which focuses on neuroscience.

For example: Grant’s summary looks at anti-stereotype-threat strategies that combat gender differences in college majors or professions. Teachers can do something with this information.

The Amen study, on the other hand, tells us about different levels of brain activity as measured by Single Photon Emission Computed Tomography (SPECT). I don’t know exactly what SPECT is, and I certainly don’t know how I would teach differently given this information.

So for me, again, neuroscience is fascinating, and psychology is useful.

(To be clear, I have several colleagues–whose judgment I highly respect–who disagree with me strongly on this point; that is, they think the neuroscience is just as important for teachers as the psychology. So, if you think I’m wrong, you’re not the only one.)

The Second Lens: The Population Being Studied

Whenever you use brain research to help your teaching, you should focus on the participants in the study. The more the participants resemble your own students, the likelier it is that the research findings will benefit your students.

So, if you find a study that says three repetitions of a practice exercise benefits long-term memory, that study might be very helpful. But: if the participants in the study were college students at an elite university, and you teach 1st graders who are already struggling with formal education, the study might not mean much to you.

After all, your students differ from those in the study so substantially that there’s no way to be sure the conclusions apply to your teaching context.

Grant’s research summary chooses several very large analyses. When he looks at (very small) gender differences in math scores, for example, his source draws on almost 4,000 studies. It seems likely that such broadly supported research will apply to my students too.

Amen’s study looks at a very large population–almost 27,000 people. However, and this is a big however, all but 119 of those people were suffering from “a variety of psychiatric conditions such as brain trauma, bipolar disorders, mood disorders, schizophrenia/psychotic disorders, and attention deficit hyperactivity disorder (ADHD).”

For obvious reasons, it’s hard to draw conclusions about neurotypical brains by studying aneurotypical brains.

So, again, because the Grant summary includes students like mine, and the Amen study doesn’t, I’m likelier to benefit from Grant’s conclusions.

(By the way, it’s entirely possible that your students seem more like Amen’s participants than those included in Gran’s summary–in which case, you may be more swayed by Amen’s findings.)

The Third Lens: Biases

In the world of science, “bias” isn’t necessarily a bad thing. All analysis–including yours, including mine–includes bias. Our goal should not be to eliminate bias (we can’t), but to recognize it in ourselves and others, and to do the best we can to look for countervailing biases.

So, let me be up front with you: my bias is, I’m usually skeptical about strong claims of gender difference in education. This skepticism has many sources–but, no matter how good those sources are, you should know that I’m not an impartial author delivering truth from on high.

I am, instead, someone who rarely finds evidence of gender difference in education persuasive…and (surprise!) my post has twice concluded that the “gender makes little difference in education” article is more useful and persuasive than the “there are big gender differences in brains” article.

Now that you know my bias, you should a) look for people with the opposite bias, and see if you find their arguments more persuasive than these, and b) recognize your own biases, and do your best to counterbalance them.

After all, one thing is certainly true about male and female brains: we’re all faster to believe ideas that support our own prior conclusions.

——————————————

Two final notes:

First, my thanks to Stephanie Sasse (prior editor of this blog) and Maya Bialik (former writer for this blog) for their idea of “lenses” as a way to analyse brain research.

Second, brain research generally hasn’t come to grips with people who fall outside a male/female gender dichotomy. Our understanding of gender and learning will be stronger and more useful when it does.