Skip to main content
Bilingual Preschoolers and Self-Control
Andrew Watson
Andrew Watson

AdobeStock_124990522 [Converted]_Credit

If you can speak two or more languages, you’re likely to have some real advantages in life. For starters, you can talk easily with lots more people, and turn off the subtitles on more movies.

Are there cognitive benefits to bilingualism? That is, does being bilingual help you think better?

(more…)

Beyond Mere “Memory”
Andrew Watson
Andrew Watson

Newcomers to the field of psychology and neuroscience often want to learn as much as they can about a student’s memory system.

After all: when students learn something new, that means their memory has changed. So, if we know how memory works, then we’ll know how learning happens.

Alas, it’s not that simple.

It turns out that we have many different memory systems. We can’t simply learn how one of them works; we have to understand them all.

Key Distinctions

In the first place, we need to distinguish between long-term memory, and other short-term memory systems.

For example: if I ask you for your business phone number, you pull that number out of your long-term memory. After all, you know it quite well.

As I then walk across the room to write that number down, I hold that number in my short-term memory. (Probably I’m rehearsing it in my head, or even saying the numbers quietly.)

If, however, I decide to engage in some quick mental exercise, I might try to add together all the digits in your phone number. In that case, I’m not only holding those numbers in short-term memory, I’m also combining them in working memory.

I haven’t even written your number down yet, and already we’ve got three at least different memory systems at play.

Subtler Still

Of course, we can subdivide each of these categories in many different ways.

Long-term memory, for instance, includes at least two sub-categories.

Explicit memory records facts and events. I know that the Ideal Gas Law states that PV=nRT (fact). I know that yesterday was my mother’s wedding anniversary (event).

Implicit memory, by contrast, records processes: how to do things. Muscle memory is implicit. So is your knowledge of your native language’s grammar. You know how to juggle, and how to conjugate the auxillary verb “should”–even though you probably can’t say exactly how you’re doing those things.

In schools, we seem to focus a great deal on explicit memory: we want our students to know all sorts of facts.

However, we also want them to learn procedures: how to integrate a quotation into a subordinate clause, or how to solve for three variables with three equations.

Initially, our students learn these skills explicitly, but with enough practice they can do them without having to think about it. At that magic moment, their explicit memory has become implicit.

Brain Structures and Memory

We’ve known for a long time that explicit and implicit memory formation takes place in different parts of the brain.

Those of you who know the story of Henry Molaisson know that surgeons removed his hippocampi to relieve his debilitating epilepsy. The operation (mostly) cured this medical problem, but created a profound cognitive problem: he could no longer form new explicit memories.

That is: if he practiced drawing a complex figure every day, he didn’t remember from one day to the next that he had practiced doing so the day before; he couldn’t remember the event.

However–and here’s the key point–HE GOT BETTER AT DRAWING THE FIGURE. That is, he didn’t form explicit memories of practicing, but he did form implicit memories of the new skill. He knew how to do it.

Clearly, the hippocampi are essential for explicit memory formation, but not for implicit memory formation.

Larry Squire’s article Memory systems of the brain: A brief history and current perspective provides a helpful overview of different memory systems, and the places in the brain that house them.

(The Henry Molaisson story is often told. Although controversial, Suzanne Corkin’s book Permanent Present Tense is probably the best place for an extended exploration of HM’s life, and the scientific information learned from it.)

Today’s News

A recent article in the journal Neuron argues that explicit and implicit memory differ not only in their location in the brain, but also in the frequency of their neural signatures.

AdobeStock_77445377 (1)_Credit

As you can see in the diagram above, gamma waves oscillate quite rapidly–up to 100 times per second–whereas delta waves oscillate slowly–fewer than 3 times per second.

(Wikicommons has a helpful visualization of different oscillation rates here.)

This article suggests that explicit memories show an increase in the alpha/beta range (10-30 Hz), whereas implicit memories produce an increase in theta waves (3-7 Hz).

In other words: explicit and implicit memories record different kinds of information, operate in different parts of the brain, and produce increases in different kinds of brain waves.

As of yet, there are no specific teaching implications to these research findings. However, they underline the point where this argument started: we can’t simply study a student’s memory system, because each student has so many (and so complex) memory systemS.

Little wonder, then, that teaching and learning can be so challenging. And, of course, so much fun.

Autonomy and Motivation
Andrew Watson
Andrew Watson

AdobeStock_108076525_Credit

Self-determination theory, developed by Edward Deci & Richard Ryan, argues that people are motivated by a desire for three things: autonomy, relatedness, and competence.

(Here‘s a handy place to brush up on self-determination theory.)

This theory suggests that teachers can motivate students by creating lesson plans and classroom environments that promote all three.

As is always true, such broad categories identified by researchers might not be easy to translate into specific classroom practices that work for my students.

For example: What kind of metacognition is appropriate for 1st graders?

How, exactly, can I instill a growth mindset in high-schoolers? (I know: “process praise” in place of “person praise.” But what exactly does that sound like for a 16-year old?)

And: if I want to put self-determination theory to work, what precisely does autonomy look like in the classroom?

Of course, the answer to that question will be different for each of us. To get that conversation started, here‘s an article over at Edutopia listing a few strategies to promote classroom autonomy.

Some of these might be helpful for your students; some not. But, in any case, they’re a useful prompt for our own thinking about the appropriate kind of autonomy to motivate our own students.

Default Image
Andrew Watson
Andrew Watson

When you see claims for an exciting new brain training finding (the headline crows “Dementia Breakthrough? Brain training game ‘significantly reduces risk’ “), you can expect to see the skeptics respond very quickly.

As the Guardian reports, the study didn’t follow rigorous definitions of dementia–it allowed participants to self-report!–and their results didn’t consistently reach statistical significance.

We ardently hope that someday we’ll find brain-training games that work. Perhaps later research will reveal these games to be effective.

For the time being, however, it seems the best we’ve got to reduce the likelihood of dementia is lifestyle changes: exercise being the best option.

I’ll see you on the jogging track tomorrow morning…

Welcome to “the Messiness”
Andrew Watson
Andrew Watson

AdobeStock_47527235_Credit

In a recent interview on this blog, Dr. Pooja K. Agarwal spoke about the benefits of retrieval practice: a study technique that–in her words–focuses on pulling information OUT of students’ brains rather than getting it back IN.

For example: if I begin today’s class by having my students write down three things they remember from yesterday’s lesson on the Han dynasty, that’s retrieval practice. After all, they’re going back into their memories and drawing OUT facts and ideas we discussed.

If, however, I begin by briefly summarizing yesterday’s class, well, then I’m trying to put information back IN. That’s not retrieval practice.

Dr. Agarwal summarizes the benefits of retrieval practice thus: “it works for all students in all subjects, all the time.”

Sounds tempting, no?

Pushing Boundaries

In one part of our conversation, Dr. Aragwal notes that she likes doing research in actual classrooms with actual students–rather than in psychology labs in highly controlled conditions–because “I really like the messiness of of doing scientific research in classrooms. The fire alarms, and school assemblies, and kids who are out sick, I really enjoy it because it pushes boundaries.”

In the spirit of messiness, here’s a recent post from the Learning Scientists about using retrieval practice in elementary school to learn vocabulary.

The good news about this study:

First: it took place in a real school with real students, not in a psychology lab. That means its results are likelier to be meaningful to teachers.

Second: the participants were 9-year-olds, not college students. So, we can be more confident that retrieval practice works with…say…4th graders.

Third: the study took place in the Netherlands, so we’ve got reason to believe that the benefits go beyond a North American cultural context.

So far, so good.

Let the Messiness Begin

At the same time, this particular study revealed a few muddles as well.

Muddle #1: the size of the benefit was relatively small. Retrieval practice produced more learning than simple restudy, and more than “elaborative retrieval,” but statistically speaking that difference was harder to find than in a psychology lab.

Muddle #2: Dr. Agarwal’s research shows that fill-in-the-blank retrieval practice and multiple-choice retrieval practice are equally effective. This study, however, contradicts that finding; multiple-choice retrieval didn’t produce more learning than pure restudy.

Muddle #3: believe it or not, muddle #3 contradicts muddle #2. Because of the study design, the authors acknowledge that their own findings about multiple-choice tests aren’t fully persuasive. For example: because the average score on the multiple-choice tests was above a 90%, there wasn’t enough difference among the students’ scores to calculate meaningful effects.

What should teachers do with all this contradictory information?

My advice: Embrace the muddle.

Teachers should expect that different studies produce muddled–and occasionally contradictory–results.

No one study tells us everything we need to know about retrieval practice. Instead, we’re looking for patterns of findings.

If we do ten studies, and eight of them show that retrieval practice helps learning, that’s impressive. We don’t need to be thrown off by one study that shows no effect–or, as in this case, a relatively smaller effect than in a psych lab.

The Quiet Finding

Although the authors don’t dwell on this point, one finding jumped out at me.

In one of the restudy conditions, students were asked to “elaborate” on the meaning of the word. For example, as they tried to remember “compost pile,” they were asked to circle the words relating to a compost pile on this list: manure, plastic, delicious, orange-peels, mailbox, dead leaves.

My teacherly instincts tell me that this restudy condition ought to help students. After all, to circle the correct words, they have to think a bit harder about the meaning of the phrase “compost pile.” That additional thought strikes me as a desirable difficulty, and ought to produce more learning.

But–at least in this one study–it didn’t. Students who “elaboratively restudied” scored between the “pure restudy” group and the “retrieval practice” group–and their scores weren’t significantly different from either.

The Take-Aways…

I myself reach three conclusions based on this research:

A) Yup: retrieval practice still works, even with 4th graders, even with vocabulary learning, even in the Netherlands.

B) My instincts about elaborative restudy might be off. I should keep my eyes peeled for further research.

C) The muddle isn’t disheartening, it’s enjoyable. Jump in–the water’s warm!

 

The Benefits of Prediction; the Dangers of Vocabulary
Andrew Watson
Andrew Watson

AdobeStock_6446201_Credit

What’s the best way to study complex material?

Working with Charles Atwood at the University of Utah, Brock Casselman tried an idea:

He had students in a general chemistry class do weekly online problems and practice tests; after completing that work, the students received detailed feedback.

In addition to this online practice, half of the students also predicted their scores before they took the tests; they then made study plans after they received the feedback.

Did this additional work help?

Indeed it did. On average, it raised grades on the final exam by 4%.

Even more impressively, those in the bottom quartile of the class raised their exam grade by 10%.

Especially for those who struggled with the material, making predictions and updating study plans boosted learning.

Reasons to Celebrate; Reasons to Pause

Of course, this research is quite helpful in giving us specific teaching advice. The more we can encourage our students to stop and predict their success, the more we can prompt them to make thoughtful study plans, the more that they’re likely to learn.

So far, so good.

However, I do see two reasons to add a note of caution.

First, this study was done in a difficult college class; according to this interview, only 2/3 of the students who take the class ever pass it.

A study technique that helps in such a difficult class might be beneficial to students in less rigorous classes…but, we can’t be sure based on this research.

Second, I do worry about the broad vocabulary used to describe this study technique: “metacognition.”

No doubt you’ve heard of metacognition: it means “thinking about thinking.” When I stop and ask myself, “now, why did I get that problem wrong? What patterns do I notice with other mistakes I made?” I’ve engaged in metacognition.

Here’s the potential danger. While it is true that Casselman’s particular set of metacognitive strategies helped these students, that doesn’t mean that ALL metacognitive strategies will help ALL students.

For instance, you might read that “using context clues” is a metcognitive strategy. It certainly is. And, of course, using context clues might well help students to important discoveries.

However: that’s not the metacognitive strategy that was used in this case. So, this study doesn’t show that using context clues would help students in this chemistry class.

Or that it would help your students.

Boundaries Matter

In a recent post, I encouraged teachers to look for boundary conditions. In other words: we’re interested in researchers’ general findings, but we want to be sure that they apply specifically to our students.

To do so, check out the “participants” section of the research you’re reading. If the students who participated in the research resemble your students, then you’re good to go. If not, use your own best judgment about the applicability of that research.

Equally important: be sure that the specific techniques described as “metacognition” are in fact the ones that you’re using. If not, you should look for more research to be sure you’re on the right track.

After all, my predictions about the benefits of metacognition might be correct–but if my results show that a particular metacognitive strategy didn’t work, I need to develop a new study plan.

Default Image
Andrew Watson
Andrew Watson

Here’s a hypothetical situation:

Let’s say that psychology researchers clearly demonstrate that retrieval practice helps students form long-term memories better than rereading the textbook does.

However, despite this clear evidence, these researchers nonetheless emphatically recommend that students avoid retrieval practice and instead reread the textbook. These researchers have two justifications for their perverse recommendation:

First: students aren’t currently doing retrieval practice, and

Second: they can’t possibly learn how to do so.

Because we are teachers, we are likely to respond this way: “Wait a minute! Students learn how to do new things all the time. If retrieval practice is better, we should teach them how to do it, and then they’ll learn more. This solution is perfectly obvious.”

Of course it is. It’s PERFECTLY OBVIOUS.

Believe It Or Not…

This hypothetical situation is, in fact, all too real.

In 2014, Pam Mueller and Dan Oppenheimer did a blockbuster study comparing the learning advantages of handwritten notes to laptop notes.

Their data clearly suggest that laptop notes ought to be superior to handwritten notes as long as students learn to take notes the correct way.

(The correct way is: students should reword the professor’s lecture, rather than simply copy the words down verbatim.)

However–amazingly–the study concludes

First: students aren’t currently rewording their professor’s lecture, and

Second: they can’t possibly learn how to do so.

Because of these two beliefs, Mueller and Oppenheimer argue that–in the witty title of their article–“The Pen is Mightier than the Laptop.”

But, as we’ve seen in the hypothetical above, this conclusion is PERFECTLY OBVIOUSLY incorrect.

Students can learn how to do new things. They do so all the time. Learning to do new things is the point of school.

If students can learn to reword the professor’s lecture when taking notes on a laptop, then Mueller and Oppenheimer’s own data suggest that they’ll learn more. And yes, I do mean “learn more than people who take handwritten notes.”

(Why? Because laptop note-takers can write more words than handwriters, and in M&O’s research, more words lead to more learning.)

And yet, despite the self-evident logic of this argument, the belief that handwritten notes are superior to laptop notes has won the day.

That argument is commonplace is the field of psychology. (Here‘s a recent example.)

Even the New York Times has embraced it.

The Fine Print

I do need to be clear about the limits of my argument:

First: I do NOT argue that a study has been done supporting my specific hypothesis. That is: as far as I know, no one has trained students to take reworded laptop notes, and found a learning benefit over reworded handwritten notes. That conclusion is the logical hypothesis based on Mueller and Oppenheimer’s research, but we have no explicit research support yet.

Second: I do NOT discount the importance of internet distractions. Of course students using laptops might be easily distracted by Twinsta-face-gram-book. (Like everyone else, I cite Faria Sana’s research to emphasize this point.)

However, that’s not the argument that Mueller and Oppenheimer are making. Their research isn’t about internet distractions; it’s about the importance of reworded notes vs. verbatim notes.

Third: I often hear the argument that the physical act of writing helps encode learning more richly than the physical act of typing. When I ask for research supporting that contention, people send me articles about 1st and 2nd graders learning to write.

It is, I suppose, possible that this research about 1st graders applies to college students taking notes. But, that’s a very substantial extrapolation–much grander than my own modest extrapolation of Mueller and Oppenheimer’s research.

And, again, it’s NOT the argument that M&O are making.

To believe that the kinesthetics of handwriting make an essential difference to learning, I want to find a study showing that the physical act of writing helps high school/college students who are taking handwritten notes learn more. Absent that research, this argument is even more hypothetical than my own.

Hopeful Conclusion

The field of Mind, Brain, & Education promises that the whole will be greater than the sum of the parts.

That is: if psychologists and neuroscientists and teachers work together, we can all help each other understand how to do our work better.

Frequently, advice from the world of psychology gives teachers wise guidance. (For example–retrieval practice.)

In this case, we teachers can give psychology wise guidance. The founding assumption of the Mueller and Oppenheimer study–that students can’t learn to do new things–simply isn’t true. No one knows that better than teachers do.

If we can keep this essential truth at the front of psychology and neuroscience research, we can benefit the work that they do, and improve the advice that they give.

Good News about Concept Mapping
Andrew Watson
Andrew Watson

AdobeStock_38023369_Credit

This meta-analysis, which looks at studies including almost 12,000 students, concludes that creating concept maps does indeed promote learning.

Specifically, it’s better than simply looking at concept maps, or listening to lectures, or participating in discussions, or even writing summaries.

The article summarizes several hypotheses to explain the benefits of concept mapping: it reduces working memory load by using both visual and verbal channels, it requires greater cognitive elaboration, and so forth.

So, let’s hear it: how do you get your students to map concepts? What successes have you had? Let me know in the comments…

(h/t IQ’s Corner)

The Benefits of Forgetting
Andrew Watson
Andrew Watson

AdobeStock_41168140_Credit

As teachers, we earnestly want our students to REMEMBER what they learned; their habit of FORGETTING leave us glum and frustrated.

(In truth, our own forgetting often leaves us glum and frustrated. If you could tell me where I put my to-do list, I’d be grateful.)

In this article at Neuron, authors Blake Richards and Paul Frankland argue that our teacherly priorities don’t quite align with our neurobiology.

In their account, we remember information not simply to have that information, but in order to make good decisions.

In some cases, of course, having more information benefits our decisions, and so our brains are designed to recall that information.

In other cases, however, some kinds of information might well interfere with good decision making.

Specifically, if we forget correctly, we are a) less likely to make decisions based on outdated information, and b) better able to form useful generalizations.

In other words: forgetting is a feature, not a bug.

 

Neuroplasticity in Rural India
Andrew Watson
Andrew Watson

AdobeStock_52841678_Credit

You hear so much about “neuroplasticity” at Learning and the Brain conferences that you already know its meaning: brains have the ability to change.

In fact, you hear about neuroplasticity so often that you might start to lose interest. You say to yourself: “Brains can change: blah, blah, blah. Tell me something I don’t already know.”

And then you read this study about adult women in rural India. They had never learned to read; heck, they had never even been to school.

And, sure enough, when they were taught to read, their brains started changing. After only six months, their brains looked measurably different–all because they had started to read.

On the one hand, this result is perfectly straightforward: if their brains hadn’t changed, how would they have learned anything? And yet, unlike most “doing X causes your brain to change!” stories, this one struck me as quite poignant.

Consider this your feel-good-about-neuroscience story of the day.