August 2020 – Education & Teacher Conferences Skip to main content
The Best Length of Time for a Class [Repost]
Andrew Watson
Andrew Watson

Quite consistently, this post has been among the most searched for and most popular on the blog.

Teachers and administrators REALLY want to know: What is the optimal amount of time for our students to meet? What’s the very best schedule?

Here’s the best answer I have:


I met yesterday with several thoughtful teachers who had resonant questions about education research.

class length

How do we balance factual learning and deep thinking?

What’s “the right amount of stress” during a test?

How can we promote collaboration while honoring individual differences?

And:

What’s the optimal class length?

This question comes up often. Should we have lots of short classes, so every subject meets every day? Should we have a few longer classes, so that we can dig deeply into a particular topic without interruption?

Debates sometimes fall along disciplinary lines. Foreign language and math teachers often want frequent class meetings; English and History teachers typically like bigger chunks of time for discussions.

Science teachers just gotta have 80 minutes to run a lab well.

But: what does research show?

Class Length: What Research Tells Us

As far as I know, we just don’t have a clear answer to that question.

Over at the Education Endowment Fund, for example, they’ve investigated the benefits of block scheduling: that is, a few long periods rather than several short ones.

The finding: we can’t really say. Or, to quote EEF: “There is no consistent pattern in the evidence.”

More precisely:

The evidence suggests that how teachers use the time they are allocated is more important than the length of lesson or the schedule of lessons, and hence that the introduction of block scheduling is unlikely to raise attainment by itself.

By implication, a change away from block scheduling shouldn’t raise attainment either.

The point is not how long we teach but how well we teach with the time we’ve got.

For this reason, I often counsel schools and teachers: before you change your schedule, study human attention systems.

Once teachers know how attention works — and, it’s A LOT more complicated that we might have thought — we’ll be much better at helping students learn. (If you have the chance to attend a Learning and the Brain session about attention: RUN, don’t walk.)

Class Length: What Research Can’t Tell Us

Research doesn’t answer this question, I think, because it can’t. There’s no one correct answer.

If you teach 2nd graders or 7th graders or 11th graders, you’ll probably find that different lengths of time work better.

If you teach in cultures that inculcate patience and concentration, longer classes will work better than in cultures with a more get-up-and-go kind of pace.

The number of students in the class might matter.

The experience of the teacher almost certainly matters.

When your school starts investigating schedules, therefore, I suggest you start with these essentials:

First: study human attention.

Second: don’t design “the optimal schedule.” Design the optimal schedule for your school and your students. It might not work at anyone else’s school, but it doesn’t need to.

A schedule that works for you and your students is the closest to optimal that you can get.

Laptop Notes or Handwritten Notes? Even the New York Times Has It Wrong [Reposted]
Andrew Watson
Andrew Watson

You’ll often hear the claim: “research says students remember more when they take notes by hand than when they use laptops.”

The best-known research on the topic was done in 2014.

You’ll be surprised to discover that this conclusion in fact CONTRADICTS the researchers’ own findings. Here’s the story, which I wrote about back in 2018…


Here’s a hypothetical situation:

Let’s say that psychology researchers clearly demonstrate that retrieval practice helps students form long-term memories better than rereading the textbook does.

However, despite this clear evidence, these researchers emphatically tell students to avoid retrieval practice and instead reread the textbook. These researchers have two justifications for their perverse recommendation:

First: students aren’t currently doing retrieval practice, and

Second: they can’t possibly learn how to do so.

Because we are teachers, we are likely to respond this way: “Wait a minute! Students learn how to do new things all the time. If retrieval practice is better, we should teach them how to do it, and then they’ll learn more. This solution is perfectly obvious.”

Of course it is. It’s PERFECTLY OBVIOUS.

Believe It Or Not…

This hypothetical situation is, in fact, all too real.

In 2014, Pam Mueller and Dan Oppenheimer did a blockbuster study comparing the learning advantages of handwritten notes to laptop notes.

Their data clearly suggest that laptop notes ought to be superior to handwritten notes as long as students learn to take notes the correct way.

(The correct way is: students should reword the professor’s lecture, rather than simply copy the words down verbatim.)

However — amazingly — the study concludes

First: students aren’t currently rewording their professor’s lecture, and

Second: they can’t possibly learn how to do so.

Because of these two beliefs, Mueller and Oppenheimer argue that — in their witty title — “The Pen is Mightier than the Laptop.”

But, as we’ve seen in the hypothetical above, this conclusion is PERFECTLY OBVIOUSLY incorrect.

Students can learn how to do new things. They do so all the time. Learning to do new things is the point of school.

If students can learn to reword the professor’s lecture when taking notes on a laptop, then Mueller and Oppenheimer’s own data suggest that they’ll learn more. And yes, I do mean “learn more than people who take handwritten notes.”

(Why? Because laptop note-takers can write more words than handwriters, and in M&O’s research, more words lead to more learning.)

And yet, despite the self-evident logic of this argument, the belief that handwritten notes are superior to laptop notes has won the day.

That argument is commonplace is the field of psychology. (Here‘s a recent example.)

Even the New York Times has embraced it.

The Fine Print

I do need to be clear about the limits of my argument:

First: I do NOT argue that a study has been done supporting my specific hypothesis. That is: as far as I know, no one has trained students to take reworded laptop notes, and found a learning benefit over reworded handwritten notes. That conclusion is the logical hypothesis based on Mueller and Oppenheimer’s research, but we have no explicit research support yet.

Second: I do NOT discount the importance of internet distractions. Of course students using laptops might be easily distracted by Twinsta-face-gram-book. (Like everyone else, I cite Faria Sana’s research to emphasize this point.)

However, that’s not the argument that Mueller and Oppenheimer are making. Their research isn’t about internet distractions; it’s about the importance of reworded notes vs. verbatim notes.

Third: I often hear the argument that the physical act of writing helps encode learning more richly than the physical act of typing. When I ask for research supporting that contention, people send me articles about 1st and 2nd graders learning to write.

It is, I suppose, possible that this research about 1st graders applies to college students taking notes. But, that’s a very substantial extrapolation–much grander than my own modest extrapolation of Mueller and Oppenheimer’s research.

And, again, it’s NOT the argument that M&O are making.

To believe that the kinesthetics of handwriting make an essential difference to learning, I want to find a study showing that the physical act of writing helps high school/college students who are taking handwritten notes learn more. Absent that research, this argument is even more hypothetical than my own.

Hopeful Conclusion

The field of Mind, Brain, & Education promises that the whole will be greater than the sum of the parts.

That is: if psychologists and neuroscientists and teachers work together, we can all help each other understand how to do our work better.

Frequently, advice from the world of psychology gives teachers wise guidance. (For example: retrieval practice.)

In this case, we teachers can give psychology wise guidance. The founding assumption of the Mueller and Oppenheimer study — that students can’t learn to do new things — simply isn’t true. No one knows that better than teachers do.

If we can keep this essential truth at the front of psychology and neuroscience research, we can benefit the work that they do, and improve the advice that they give.

Growing Mindsets in Argentina? [Repost]
Andrew Watson
Andrew Watson

Since I first published this post a year ago, there’s been an important change to its argument: the study I’m writing about now HAS been published in a peer-reviewed journal.

As the Mindset skepticism movement gains further steam, I was struck by a comment on this study from the invaluable Dan Willingham. If I remember this correctly, he tweeted (roughly): “The mystery is that we haven’t been able to make this theory work in the classroom.”

Note the elegant middle ground this comment finds. Willingham acknowledges both the decades of scrupulous work that Dweck and her colleagues undertook, and that classroom interventions haven’t had the effect we’d like (for most students).

He doesn’t say (as others mean-spiritedly imply) that Dweck is a fraud. He doesn’t say (as others blithely imply) that we don’t need to worry about the rising number of classroom non-replications.

Instead, he says: “this intervention works under some circumstances, but not under others. We don’t yet know why. If we did, that would be SUPER helpful.”

I myself — as I argue below — think that we went too far thinking that upbeat posters on the wall would radically change students’ motivation, and now we’re going too far in arguing the whole Mindset thing is bunk.

OF COURSE one-time interventions don’t work. Are we truly surprised by this? PERHAPS creating a different school climate will work. Is that so preposterous an argument?

In any case: here’s what I wrote in July of 2019…


Mindset theory has faced increasing skepticism in recent years.

For four decades — literally!–Carol Dweck and other researchers ran thoughtful studies with thousands of students. Over and over, they found that students who think about about their work in particular ways (shorthand, “growth mindset”) do better than those who don’t (“fixed mindset”).

Like other areas of psychology (think “power poses”), Mindset Theory has been caught up in the “replication crisis.”

In brief: if Mindset theory is true, then a mindset intervention should help no matter who does the intervening. It should work when Dweck’s team does it with her students, and when I do so with mine.

If it works only for Dweck, well, that doesn’t really help the rest of us.

And, several researchers have found that various strategies didn’t replicate.

A much publicized meta-analysis, published last summer, suggests that Mindset interventions had very small effects. (I myself think this meta-analysis has been over-interpreted; you can see my analysis here.)

Today’s News

Researcher and NYU professor Alejandro Ganimian has published research about a large-scale mindset intervention in Argentina.

Ganimian had 12th graders at 100 (!) schools read a passage arguing that “persisting through difficult challenges can develop the brain.”

The 12th graders then wrote “a letter to a classmate of their choice on the three main lessons from the reading and how they might help him/her.”

To keep the growth mindset message fresh, those letters were posted in the classroom.

He compared these students to 12th graders at 102 other schools that had not used this intervention.

The results? Nada. Nothin’. Bupkis.

Specifically:

This intervention had “no effect on students’ propensity to find challenging tasks less intimidating.”

It didn’t increase the likelihood that they would pay attention in class.

By some rough/indirect measures, it didn’t have an effect on the participants’ academic success.

As Ganimian sums up his results:

In nearly all outcomes, I can rule out even small effects. …

This study suggests that the benefits of growth mindset interventions may be more challenging to replicate and scale in developing countries than anticipated.

What Should Teachers Do?

First: two clarifying points. a) Ganimian’s research hasn’t been peer reviewed and published in a journal. It is currently a working paper, hosted on his website. [Ed. 8/2020: Ganimian’s research now has been published: see link at the top of this post.]

And b) I myself am not a neutral source in this debate. I’ve written a book about mindset research, and so I read Ganimian’s work through that lens.

Second: I think mindset strategies are likeliest to have an effect when used all together as a consistent, unified approach to student motivation.

That is: I’m not at all surprised that a “one-shot” intervention doesn’t have big results. (Some research has found success with “one-shot” interventions; I’ve always been skeptical.)

So, if you want to use mindset research in your classrooms, don’t do just one thing, once. A motivational poster really won’t accomplish much of anything.

Instead, understand the interconnecting strategies that promote a growth-mindset climate, and use them consistently and subtly. Heck, I can even recommend a book that will show you the way.

Third: Here’s what I wrote last October:

We should not, of course, ask mindset to solve all our problems. Nor should we ask retrieval practice to solve all problems. Or short bursts of in-class exercise.

No one change fixes everything.

Instead, we should see Mindset Theory as one useful tool that can help many of our students.

Obsessed with Working Memory [Reposted]
Andrew Watson
Andrew Watson

I’m on vacation for the month of August, and so we’ll be reposting some of our most-viewed articles.

We’re starting with our series on working memory: one of the most essential concepts from the field of cognitive science.


When I attended my first Learning and the Brain conference, I had never even heard of working memory.

Now, I obsess over working memory. And, I think all classroom teachers should join me.

Heck, I think everyone who cares about learning, curriculum, teacher training, and education should think about working memory. All. The. Time.

In this series of posts, I’ll start by defining working memory (WM) today. And in succeeding posts, I’ll talk about using that knowledge most helpfully.

Trust me: the more we think about WM, the more our students learn.

Working Memory: An Example

As an example of WM in action, I’m going to give you a list of 5 words. Please put those words in alphabetical order. IN YOUR HEAD. (That’s right: don’t write anything down…)

Okay, here’s the list:

Think of the five workdays of the week. (Hint: if you live in a Western society, the first one is ‘Monday.’)

Now, go ahead and put those five words into alphabetical order. Don’t peek. I’ll wait…

 

Probably you came up with this list:

Friday, Monday, Thursday, Tuesday, Wednesday

I do this exercise with teachers often. For most everyone, that’s fairly simple to do. I’m guessing you got it right quite easily.

Working Memory: A Definition

To succeed at that task, you undertook four mental processes.

First, you selected relevant information. Specifically, you selected the instructions that you read. And, you looked into your long-term memory to select the workdays of the week.

Next, you held that information. If you had let go of the instructions, or of the days of the week, you couldn’t have completed the task.

Third, you reorganized the days of the week according to the instructions. You started with a chronological list (Monday, Tuesday, Wednesday…), and converted it into an alphabetical lest (Friday, Monday, Thursday…).

In many WM tasks (but not this one), you might not only reorganize, but also combine information. If, for instance, you added up 7+12+4+18+6 in your head, you selected, held, and combined those numbers into a new number.

So:

Working memory is a limited, short-term memory capacity that selects, holds, reorganizes, and combines information from multiple sources.

In a later post, I’ll talk about some finer points in the definition of WM. For the time being, focus on those four verbs: select, hold, reorganize, combine.

Working Memory: An Acronym

Because WM is so important, it would be great if there were a handy acronym. Happily, there is!

Select

Hold

REorganize

Kombine

What does that get you? SHREK! (I know: I misspelled ‘combine.’ But: I lived in Prague for a year, so you can forgive me for that useful alteration.)

Working Memory in the Classroom

Now, ask yourself: which of these classroom tasks requires working memory?

That is: in which of these cases do your students have to select, hold, reorganize, and/or combine information?

Solving a word problem.

Comparing W.E.B. du Bois and Booker T. Washington.

Transposing a song into a new key.

Applying a new phonics rule to various combinations of letters.

Choreographing a dance routine.

The correct answer is: ALL OF THEM.

In fact, practically everything we do in school classrooms requires working memory. Often, it requires A LOT of working memory.

To Sum Up

We use WM to select, hold, reorganize, and combine (SHREK) information.

Students use WM constantly in classrooms, for practically everything they do.

Simply put: no academic information gets into long-term memory except through working memory. It’s that important.

Up next: we’ll highlight key facts about WM. Then we’ll talk about using that knowledge in your teaching.


This series continues:

Part II: Three Core Ideas for Working Memory

Part III: Anticipating Overload

Part IV: Identifying Overload

Part V: Working Memory Solutions

Part VI: Working Memory Resources