handwriting – Education & Teacher Conferences Skip to main content
Revisiting the “Handwriting vs. Laptops” Debate: More Moving Goalposts
Andrew Watson
Andrew Watson

I don’t often repost articles, but I think this one deserves another look — for at least two reasons:

First: The study described below has been cited FREQUENTLY in recent weeks, although it really does not merit the confidence that it inspires, and

Second: The study has in fact drawn a strong rebuttal from other researchers in the field.

For both these reasons, I think you’ll find this post worth another look. (I have, by the way, updated  this post to reflect the newly published rebuttal.)


Imagine this conversation that you and I might have:

ANDREW: The fastest way to drive from here to the school is via South Street.

YOU: It is? That seems like a long detour. Why would I go that way?

ANDREW: I didn’t say it was the fastest; I said it was the best because it’s the prettiest.

YOU: You DID say it was fastest…wait, the prettiest? It’s basically junk yards and construction sites.

ANDREW: Yes, but because of all the bakeries, it smells really nice.

YOU: What does that have to do with fastest/prettiest?

ANDREW: Why are you being so unpleasant and difficult? South Street is the best route…

I suspect you would think: “this conversation is very frustrating and unhelpful because the goal posts keep moving.”

That is: I initially claimed that South Street is the fastest…but keep moving my claims as soon as you object. (And, oddly, I’m mad at you for being unreasonable.)

I routinely notice this pattern when I ask questions about the claim that “handwriting is better than laptops for note taking.”

Watch the goalposts move:

CLAIM: Handwriting is better than laptops for note taking. This study says so.

ANDREW: That study starts with the BIZARRE assumption that students can’t learn how to do new things — like, how to take notes correctly. And, research since then has routinely complicated or contradicted it.

CLAIM: I didn’t say handwriting is better because of this study. It’s because writing by hand changes neural networks. This research says so.

ANDREW: You DID make that claim because of that study…wait, that other research says that writing by hand helps students learn to write by hand. Of course it does.

But that doesn’t mean that writing by hand helps students learn other things — like, say, history or chemistry or German. Can you show me research supporting that claim?

CLAIM: I can’t, but when students write on laptops they distract students around them.

ANDREW: Yes, but that’s a completely different claim than the one you started with.

CLAIM: Why are you being so unpleasant and difficult? Writing by hand is better than taking notes on laptops!

Once again, I find this conversation frustrating and unhelpful. SO MANY MOVING GOALPOSTS.

I am entirely open to the idea that handwriting is better. But if someone makes that claim, and says it’s “research-based,” I’d like them to provide research that actually supports the claim.

A bright yellow American football goalpost, above a bright green field and against dark stadium

So far, that turns out to be a big ask.

This idea that “handwriting is better than keyboarding” keeps popping (I suspect because of a recent study), so I want to re-investigate this claim — with a keen eye on those goalposts.

Reasonable Start

If you see a headline that says, “Why Writing by Hand Is Better for Memory and Learning,” you might interpret that claim roughly this way:

Students who take handwritten notes — in their 6th grade history class, say, or their 10th grade science class — remember more of that material after 2 weeks than students who took notes on laptops.

Yes, I conjured up some of those specifics: “6th grade history,” “two weeks later.” But those seem like reasonable extrapolations. What else could the claim substantively mean?

Briefly: plausible goalpost = “students remember more history 2 weeks later.”

So, let’s look at the recent research being used to support this claim.

Here’s a very basic question: “how did the researchers measure how much the students learned and remembered?”

Did the students take a quiz two weeks later? Did they undertake a “brain dump” the following day? How, precisely, do we know what they learned?

The answer is:

The researchers did not measure how much the students learned/remembered.

Honestly. No quiz. No brain dump. Nothing.

And yet, even though the study doesn’t measure memory or learning, it is being used to argue that handwriting enhances memory and learning.

I find this astonishing.

Imagine that I claimed “research shows that this drug will lower your blood pressure!” but I never actually measured anyone’s blood pressure. This study takes a similar logical shortcut.

That is: the study measures activity “in brain regions associated with memory and learning.”

Did you notice something?

Goalpost plausibly was: “students remember more history 2 weeks later.”

Goalpost now is: “more activity in important brain regions.”

Grrr.

Getting Specific

When evaluating “research-based” claims, it’s helpful to know exactly what the participants in the research did.

So, these 36 participants wrote the same fifteen words multiple times. Sometimes they wrote with a stylus on a tablet; sometimes they typed using only their right index finger. (BTW: all the participants were right handed.)

Now, this insistance on “right index finger” makes sense from a neuro-research perspective. If both “handwriters” and “keyboarders” are using one hand, then the researchers reduce lots of confounding variables.

At the same time, this emphasis also leads to highly artificial circumstances.

Presumably some people type with one finger. But, I’m guessing that most people who want to take laptop notes don’t. I suspect they want to take laptop notes because they have some degree of facility on a keyboard.

So:

Goalpost initially was: “students remember more history 2 weeks later.”

Goalpost then was: “more activity in important brain regions.”

Goalpost now is: “more activity in important brain regions when participants write as they usually do than when they type in a really, really unnatural way.”

Double grrr.

It is, of course, helpful to know about these differences in neural responses. But I don’t think they plausibly add up to “students remember more.” Because — remember — no one measured learning.

I Am Not Alone

Since I published the original version of this article almost a year ago, it has been sharply questioned by other scholars in the very same journal.

These scholars describe the original study’s conclusions as “a logical shortcut.” They share my alarm that research which never measured any learning is being used to make strong claims about learning.

They also note we shouldn’t reach an emphatic verdict about grade-school learners based on college-age students:

“Drawing conclusions on learning processes in children in a classroom from a lab study carried out on a group of university students that did not include any type of learning seems slippery at best.” (Exasperated emphasis added)

This rebuttal also expresses technical concerns about the original study’s neuro-conclusions:

While theta and alpha oscillations have been functionally related to a variety of cognitive processes it has not been clearly established that increased theta/alpha connectivity creates appropriate conditions for learning.

I don’t know enough about theta and alpha oscillations to have a strong opinion here — but I think it’s helpful to know that other neuro-experts express reasons to doubt the original study’s confidence.

Lest I Be Misunderstood

In such conversations, I’m often misunderstood to be confident about the right answer. That is: I might seem to be saying “I’m confident that laptops are better than handwriting for learning.”

I am NOT saying that.

Instead, I’m asking for research that directly measures the claim being made.

If I say to you: “research shows that handwriting is better for learning than laptops,” I should be able to show you research that directly measures that claim.

If, instead, I have research showing that handwriting develops neural networks that might be beneficial for learning, I should say that.

My frustration about this point stems from a broader concern.

Over and over, I find that non-teachers cite research — especially neuroscience research — to boss teachers around. While I certainly do believe that teachers should know about pertinent research findings (that’s why I write this blog!), I also believe that we need to acknowledge the limits of our research-based knowledge.

I just don’t think that research (yet) demonstrates that handwritten notes generate more learning than laptop notes.

Overall, I’m inclined to believe:

Practicing fine motor skills (by, say, handwriting) is really important for young learners.

Practicing handwriting makes us better at handwriting — and other word-related skills.

As students get older and more facile with a keyboard, the benefits of handwriting vs. keyboarding will probably depend on the student, the subject, the kind of notes being taken, etc.

And if I see more than one study directly testing the claim that handwriting helps people learn better, I’m entirely open to that possibility.

But at least so far, that claim is not — by any definition that seems reasonable to me– “research-based.”


Van der Weel, F. R., & Van der Meer, A. L. (2024). Handwriting but not typewriting leads to widespread brain connectivity: a high-density EEG study with implications for the classroom. Frontiers in Psychology14, 1219945.

Pinet, S., & Longcamp, M. (2025). Commentary: Handwriting but not typewriting leads to widespread brain connectivity: a high-density EEG study with implications for the classroom. Frontiers in Psychology15, 1517235.

“Writing By Hand Fosters Neural Connections…”
Andrew Watson
Andrew Watson

Imagine this conversation that you and I might have:

ANDREW: The fastest way to drive from here to the school is via South Street.

YOU: It is? That seems like a long detour. Why would I go that way?

ANDREW: I didn’t say it was the fastest; I said it was the best because it’s the prettiest.

YOU: You DID say it was fastest…wait, the prettiest? It’s basically junk yards and construction sites.

ANDREW: Yes, but because of all the bakeries, it smells really nice.

YOU: What does that have to do with fastest/prettiest?

ANDREW: Why are you being so unpleasant and difficult? South Street is the best route…

I suspect you would think: “this conversation is very frustrating and unhelpful because the goal posts keep moving.”

That is: I initially claimed that South Street is the fastest…but keep moving my claims as soon as you object. (And, oddly, I’m mad at you for being unreasonable.)

I routinely notice this pattern when I ask questions about the claim that “handwriting is better than laptops for note taking.”

Watch the goalposts move:

CLAIM: Handwriting is better than laptops for note taking. This study says so.

ANDREW: That study starts with the BIZARRE assumption that students can’t learn how to do new things — like, how to take notes correctly. And, research since then has routinely complicated or contradicted it.

CLAIM: I didn’t say laptops are better beacuse of this study. It’s because writing by hand changes neural networks. This research says so.

ANDREW: That research says that writing by hand helps students learn to write by hand. Of course it does.

But that doesn’t mean that writing by hand helps students learn other things — like, say, history or chemistry or German. Can you show me research supporting that claim?

CLAIM: I can’t, but when students write on laptops they distract students around them.

ANDREW: Yes, but that’s a completely different claim than the one you started with.

CLAIM: Why are you being so unpleasant and difficult? Writing by hand is better than taking notes on laptops!

Once again, I find this conversation frustrating and unhelpful. SO MANY MOVING GOALPOSTS.

I am entirely open to the idea that handwriting is better. But if someone makes that claim, and says it’s “research-based,” I’d like them to provide research that actually shows this claim to be true.

A bright yellow American football goalpost, above a bright green field and against dark stadium

So far, that turns out to be a big ask.

This idea that “handwriting is better than keyboarding” has popped up again (I suspect because of a recent study), so I want to re-investigate this claim — with a keen eye on those goalposts.

Reasonable Start

If you see a headline that says, “Why Writing by Hand Is Better for Memory and Learning,” you might interpret that claim roughly this way:

Students who take handwritten notes — in their 6th grade history class, say, or their 10th grade science class — remember more of that material after 2 weeks than students who took notes on laptops.

Yes, I conjured up some of those specifics: “6th grade history,” “two weeks later.” But those seem like reasonable extrapolations. What else could the claim substantively mean?

Briefly: plausible goalpost = “students remember more history 2 weeks later.”

So, let’s look at the recent research being used to support this claim.

Here’s a very basic question: “how did the researchers measure how much the students learned and remembered?”

Did the students take a quiz two weeks later? Did they undertake a “brain dump” the following day? How, precisely, do we know what they learned?

The answer is:

The researchers did not measure how much the students learned/remembered.

Honestly. No quiz. No brain dump. Nothing.

And yet, even though the study doesn’t measure memory or learning, it is being used to argue that handwriting enhances memory and learning.

I find this astonishing.

Instead, the study measures activity “in brain regions associated with memory and learning.”

Did you notice something?

Goalpost plausibly was: “students remember more history 2 weeks later.”

Goalpost now is: “more activity in important brain regions.”

Grrr.

Getting Specific

When evaluating “research-based” claims, it’s helpful to know exactly what the participants in the research did.

So, these 36 participants wrote the same fifteen words multiple times. Sometimes they wrote with a stylus on a tablet; sometimes they typed using only their right index finger. (BTW: all the participants were right handed.)

Now, this insistance on “right index finger” makes sense from a neuro-research perspective. If both “handwriters” and “keyboarders” are using one hand, then the researchers reduce lots of confounding variables.

At the same time, this emphasis also leads to highly artificial circumstances.

Presumably some people type with one finger. But, I’m guessing that most people who want to take laptop notes don’t. I suspect they want to take laptop notes because they have some degree of facility on a keyboard.

So:

Goalpost initially was: “students remember more history 2 weeks later.”

Goalpost then was: “more activity in important brain regions.”

Goalpost now is: “more activity in important brain regions when participants write as they usually do than when they type in a really, really unnatural way.”

Double grrr.

It is, of course, helpful to know about these differences in neural responses. But I don’t think they plausibly add up to “students remember more.” Because — remember — no one measured learning.

Lest I Be Misunderstood

In such conversations, I’m often misunderstood to be confident about the right answer. That is: I might seem to be saying “I’m confident that laptops are better than handwriting for learning.”

I am NOT saying that.

Instead, I’m asking for research that directly measures the claim being made.

If I say to you: “research shows that handwriting is better for learning than laptops,” I should be able to show you research that directly measures that claim.

If, instead, I have research showing that handwriting develops neural networks that might be beneficial for learning, I should say that.

My frustration about this point stems from a broader concern.

Over and over, I find that non-teachers cite research — especially neuroscience research — to boss teachers around. While I certainly do believe that teachers should know about pertinent research findings (that’s why I write this blog!), I also believe that we need to acknowledge the limits of our research-based knowledge.

I just don’t think that research (yet) demonstrates that handwritten notes generate more learning than laptop notes.

Overall, I’m inclined to believe:

Practicing fine motor skills (by, say, handwriting) is really important for young learners.

Praticing handwriting makes us better at handwriting — and other word-related skills.

As students get older and more facile with a keyboard, the benefits of handwriting vs. keyboarding will probably depend on the student, the subject, the kind of notes being taken, etc.

And if I see more than one study directly testing the claim that handwriting helps people learn better, I’m entirely open to that possibility.

But at least so far, that claim is not — by any definition that seems reasonable to me– “research-based.”


Van der Weel, F. R., & Van der Meer, A. L. (2024). Handwriting but not typewriting leads to widespread brain connectivity: a high-density EEG study with implications for the classroom. Frontiers in Psychology14, 1219945.

Handwriting Improves Learning, Right?
Andrew Watson
Andrew Watson

Here’s a good rule for research: if you believe something, look for research that contradicts your belief.

So, if you think that retrieval practice helps students learn, see if you can find research showing the opposite.

If you disapprove of cold-calling, see if any studies support its use.

If you think that hand-written notes help students more than notes taken on a laptop, try to find research that disagrees with you.

In this last case, you might even find me. Most teachers I know believe that handwritten notes are superior, and they cite a well-known study to support that belief.

I’ve argued for years that this research assumes students can’t learn how to do new things – a very odd belief for a teacher to have. If you believe a students can learn how to do new things, well, this study actually suggests that laptop notes will help more than handwritten notes.

However, the “good rule” described above applies to me too. If I believe that we don’t know whether handwriting or keyboarding is better for learning, I should look for evidence that contradicts my belief.

For that reason, I pounced on a recent science news headline. The gist: recent research by Robert Wiley and Brenda Rapp shows that students who wrote by hand learned more than those who used laptops.

So, does their research finally contradict my belief?

Learning Arabic Letters

Wiley and Rapp had college-age adults learn Arabic letters.

12 of them learned by pressing the right key on a keyboard.

12 learned by looking at the letters closely and confirming they were the same.

And, 12 learned by writing the letters.

Did these distinct learning strategies make a difference several days later?

YES THEY DID.

The hand-writers learned a lot more, and learned a lot faster.

In fact – here’s a cool part – their learning transferred to new, related skills.

These participants practiced with letters. When Wiley and Rapp tested them on WORDS, the hand-writers did better than the other two groups – even though they hadn’t practiced with words.

So: sure enough, handwriting helped students learn more.

Boundary Conditions

Given the strength and clarity of these findings, you might think that I’m going to change my mind.

Reader, I am not. Here’s why:

This research shows that writing by hand helps people learn how to write by hand. It also helps people learn to do things immediately related to writing by hand – like, say, saying and writing words.

We should notice the narrow boundaries around that conclusion.

People who write by hand learn how to write by hand.

That research finding, however, does NOT demonstrate that writing by hand helps people learn things unrelated to handwriting itself.

For instance: do handwritten notes help people learn more about history or psychology or anatomy than laptop notes? This research does not answer that question, because that question falls outside the boundaries of the research.

In a similar way: practicing scales on the piano surely helps play piano scales better than – say – watching someone else do so.

But: does practicing piano scales make me better at other tasks requiring manual dexterity? Knitting? Keyboarding? Sculpting?

To answer those questions, we have to research those questions. We can’t extrapolate from piano scales to knitting and sculpting. (Well: we can, but we really shouldn’t.)

So, What’s The Answer?

Is handwriting really a better way to learn than keyboarding?

Honestly, I just don’t think we know. (In fact, Wiley and Rapp don’t claim that handwriting helps anywhere other than learning and reading letters and words.)

In fact, I suspect we need to explore MANY other variables:

the content being learned,

the teacher’s strategy for presenting it,

the student’s preference,

the student’s age –

perhaps even the relative complexity of writing vs. keyboarding. (I’m not an expert in this topic, but I understand that some languages require very intricate steps for accurate keyboarding.)

We can say – thanks to Wiley and Rapp – that handwriting helps learn how to write by hand. But until we explore those other precise questions precisely, we shouldn’t offer strong answers as if they have research support.